Numerical Methods for Fourth Order Nonlinear Degenerate Diffusion Problems
ثبت نشده
چکیده
Numerical schemes are presented for a class of fourth order diffusion problems. These problems arise in lubrication theory for thin films of viscous fluids on surfaces. The equations being in general fourth order degenerate parabolic, additional singular terms of second order may occur to model effects of gravity, molecular interactions or thermocapillarity. Furthermore, we incorporate nonlinear surface tension terms. Finally, in the case of a thin film flow driven by a surface active agent (surfactant), the coupling of the thin film equation with an evolution equation for the surfactant density has to be considered. Discretizing the arising nonlinearities in a subtle way enables us to establish discrete counterparts of the essential integral estimates found in the continuous setting. As a consequence, the resulting algorithms are efficient, and results on convergence and nonnegativity or even strict positivity of discrete solutions follow in a natural way. The paper presents a finite element and a finite volume scheme and compares both approaches. Furthermore, an overview over qualitative properties of solutions is given, and various applications show the potential of the proposed approach.
منابع مشابه
NON-POLYNOMIAL SPLINE SOLUTIONS FOR SPECIAL NONLINEAR FOURTH-ORDER BOUNDARY VALUE PROBLEMS
We present a sixth-order non-polynomial spline method for the solutions of two-point nonlinear boundary value problem u(4)+f(x,u)=0, u(a)=α1, u''(a)= α2, u(b)= β1,u''(b)= β2, in off step points. Numerical method of sixth-order with end conditions of the order 6 is derived. The convergence analysis of the method has been discussed. Numerical examples are presented to illustrate the applications ...
متن کاملNumerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملHigh order relaxed schemes for nonlinear reaction diffusion problems
Different relaxation approximations to partial differential equations, including conservation laws, Hamilton-Jacobi equations, convection-diffusion problems, gas dynamics problems, have been recently proposed. The present paper focuses onto diffusive relaxed schemes for the numerical approximation of nonlinear reaction diffusion equations. High order methods are obtained by coupling ENO and WEN...
متن کاملFourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry
The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...
متن کاملHigh-Order Relaxation Schemes for Nonlinear Degenerate Diffusion Problems
Several relaxation approximations to partial differential equations have been recently proposed. Examples include conservation laws, HamiltonJacobi equations, convection-diffusion problems, gas dynamics problems. The present paper focuses onto diffusive relaxation schemes for the numerical approximation of nonlinear parabolic equations. These schemes are based on a suitable semilinear hyperboli...
متن کامل